Stat 534: formulae referenced in lecture, week 5: Otis closed population models

Aside on coefficient of variation (cv) and log scale parameters

- Reminder: cv describes relative variability
 - Usually used to describe data: cv = sd / mean
 - Can also be used to describe relative variability in an estimate: $cv_{estimate} = se_{estimate} / estimate$
- close relationship between sd of a log-scale estimate and cv of that estimate
- Consider an estimate of a log-scale parameter, e.g., $\gamma = \log \theta$. You may have noticed that I:
 - have exponentiated γ to estimate θ , $\exp \gamma = \exp \log \theta = \theta$
 - have exponentiated lower and upper confidence limits for γ to get the ci for θ
 - have not exponentiated the se of γ
- General approximation: Var $\log \theta \cong \operatorname{Var} \theta/(\theta)^2$

- So cv of
$$\theta = \sqrt{\operatorname{Var} \theta} / \theta \cong \operatorname{sd} \log \theta$$

- When $\gamma = \log \theta \sim N(\mu_l, \sigma_l^2)$, θ has a log normal distribution
 - $\mathrm{E} \theta = \exp\left(\mu_l + \sigma_l^2/2\right)$
 - median $\theta = \exp \mu_l$
 - so mean of θ > median of θ . By how much depends on σ_l^2

- Var
$$\theta = [\exp(\sigma_l^2) - 1] \exp(2\mu_l + \sigma_l^2) = (E \ \theta)^2 [\exp(\sigma_l^2) - 1]$$

- cv $\theta = \sqrt{\operatorname{Var} \theta/(E\theta)^2} = \sqrt{\exp(\sigma_l^2) - 1}$

- Connection between the two formulae
 - When σ_l^2 close to 0, $\exp(\sigma_l^2) \cong 1 + \sigma_l^2$ so $\operatorname{cv} \theta \cong \sqrt{1 + \sigma_l^2 1} = \sigma_l$.
 - Normal formula relies on that normality, but works for any σ_l^2
 - Approximation works for any distribution, best for small σ_l^2

Redpoll data example $(n_1 = 13, n_2 = 45, m_2 = 9)$

Data set	\hat{N}	s d \hat{N}	c v \hat{N}	Var $\log \hat{N}$	s d $\log \hat{N}$	normal
redpoll	90.14	20.13	22.3%	0.0514	0.226	23.0%
2x	184.2	29.7	16.1%	0.0261	0.161	16.2~%
25x	2333	107.2	4.6%	0.0021	0.046	4.6%

M0: constant capture probability

• Capture histories and their probabilities

r	Γime	Э		
1	2	3	# animals	probability
Y	Υ	Υ	n_{111}	p^3
Υ	Υ	Ν	n_{110}	$p^2(1-p)$
Υ	Ν	Υ	n_{101}	$p^2(1-p)$
Υ	Ν	Ν	n_{100}	$p(1-p)^{2}$
Ν	Υ	Υ	n_{011}	$p^2(1-p)$
Ν	Υ	Ν	n_{010}	$p(1-p)^2$
Ν	Ν	Υ	n_{001}	$p(1-p)^2$
Ν	Ν	Ν	n_{000}	$(1-p)^{3}$

• When you write out the log likelihood contributions from each unique capture history and combine terms, you get the log likelihood at the end of the week 4 notes

Mt: capture probability depends on occasion

- General model: unique capture probability for each occasion
- Sampling design and associated models often given names based on early investigators
- Study with multiple sampling occasions often called a Schnabel census Schnabel (1938) The estimation of the total fish population of a lake. Am. Math. Monthly 45:348-352
- t+1 parameters: $p_1, p_2, \cdots p_t, N$

Time				
1	2	3	# animals	probability
Υ	Υ	Υ	n_{111}	$p_1 p_2 p_3$
Υ	Υ	Ν	n_{110}	$p_1 p_2 (1 - p_3)$
Υ	Ν	Υ	n_{101}	$p_1(1-p_2)p_3$
Υ	Ν	Ν	n_{100}	$p_1(1-p_2)(1-p_3)$
Ν	Υ	Υ	n_{011}	$(1-p_1)p_2p_3$
Ν	Υ	Ν	n_{010}	$(1-p_1)p_2(1-p_3)$
Ν	Ν	Υ	n_{001}	$(1-p_1)(1-p_2)p_3$
Ν	Ν	Ν	n_{000}	$(1-p_1)(1-p_2)(1-p_3)$

• Writing out each contribution to lnL and combining terms gives:

 $\begin{aligned} \ln \mathcal{L}(p_1, p_2, \cdots, p_t, N \mid n_1, n_2, \cdots, n_t, M_{t+1}) &= \log \left[N! \right] - \log \left[(N - M_{t+1})! \right] - constant \\ &+ n_1 \log p_1 + (N - n_1) \log(1 - p_1) + n_2 \log p_2 + (N - n_2) \log(1 - p_2) + \cdots \\ &+ n_t \log p_t + (N - n_t) \log(1 - p_t) \end{aligned}$

• Notation:

 n_i total # caught on occasion i

 M_{t+1} # individuals seen at least once = # tags in population after the last occasion

- mle of N requires finding the root of an t 1'th degree polynomial
 - Easy for $t = 2 \Rightarrow LP$ estimator
 - Now, numerical maximization usually used for t > 2
- Other data models (e.g., versions of binomial models or hypergeometric models) lead to other estimators
- Note that $\hat{p}_i = n_i / \hat{N}$, if you have an estimate of N
 - So easy to optimize profile likelihood $\ln L(p_1, p_2, \cdots p_t \mid N)$

Mb: behavioural heterogeneity

- Capture probability different for 1st captures and subsequent captures
- "trap-happy" or "trap-shy" behaviours
- Notation:
 - p P[capture | never captured before]
 - c P[capture | captured already, at least once]
- Both p and c assumed constant over time
 - Model Mtb generalizes this to time-dependent p and c
- 3 parameters, no matter how many capture occasions: p, c, N
- Capture histories and their probabilities

Time		Э		
1	2	3	# animals	probability
Υ	Υ	Υ	n_{111}	pc^2
Υ	Υ	Ν	n_{110}	pc(1-c)
Υ	Ν	Υ	n_{101}	p(1-c)c
Υ	Ν	Ν	n_{100}	$p(1-c)^2$
Ν	Υ	Υ	n_{011}	(1-p)pc
Ν	Υ	Ν	n_{010}	(1-p)p(1-c)
Ν	Ν	Υ	n_{001}	$(1-p)^2 p$
Ν	Ν	Ν	n_{000}	$(1-p)^3$

• Notation:

- n_i : # number of individuals caught at time i
- $m_i \quad \#$ number marked individuals caught at time i
- $m_{.}$ total # times marked individuals were captured, $m_{.} = \sum_{i} m_{i}$
- $M_i \#$ marked individuals in the population at time *i* (before start trapping)
- $M_{\cdot} \quad \sum_{i=1}^{t} M_i$

Mb: log likelihood function

- After combining terms in the multinomial log likelihood, you will see that:
 - -p occurs M_{t+1} times (each animal first seen only once)
 - -c occurs $m_{\rm c}$ times (total number of captures of already marked animals)
 - 1-c occurs $M_{\cdot}-m_{\cdot}$ times (number of "capturable" marked animals that weren't captured)
 - -1-p occurs $tN M_{t+1} M_{\cdot}$ times (by difference, hard to intuit)
- Hence the sufficient statistics are M_{t+1} , M_{\cdot} , m_{\cdot}
- So we can estimate 3 parameters
- The log likelihood is:

$$\ln L(p, c, N \mid n_1, n_2, \cdots, M_{t+1}, M_{\cdot}, m_{\cdot}) = \log [N!] - \log [(N - M_{t+1})!] - constant + M_{t+1} \log p + (tN - M_{t+1} - M_{\cdot}) \log(1 - p) + m_{\cdot} \log c + (M_{\cdot} - m_{\cdot}) \log(1 - c)$$

• Differentiating and solving gives:

$$\hat{p} = \frac{M_{t+1}}{t\hat{N} - M_{\cdot}}$$

$$\hat{c} = \frac{m_{\cdot}}{M_{\cdot}}$$

- tN M is total # not yet caught occasions
 - -YYY=0
 - -YYN=0
 - N Y Y = 1
 - N N Y = 2
- \hat{N} doesn't depend on m_{\cdot}
 - So second and subsequent captures provide no information about p (makes sense) or N (surprising)
 - -c can be any value, without sacrificing information about N or p

Removal sampling:

- Don't return marked animals immediately, so c = 0
- Example

Occasion	# caught
1	260
2	141
3	97
4	50

- Don't have to continue until you fail to catch more!
- Use model Mb with $m_{\cdot} = 0$ so $\hat{c} = 0$
 - Could use Mtb if p is not constant

Choosing a model:

- AIC = $-2 \ln L + 2k$
 - -k is the number of parameters in the model
- This is an asymptotic result
- Small-sample corrected AIC: AICc = $-2 \ln L + 2k + \frac{2k(k+1)}{n-k+1}$
 - Originally developed in the time-series literature: Hurvich and Tsai 1989, Biometrika 76:297-307
 - -n = # observations
 - "useful when n/k < 40"
- What is *n* for mark recapture data?
 - Best answer (so far): total # releases (Nichols)
 - so an individual captured (and released) twice adds 2 to n
- BIC = $-2 \ln L + k \log n$
 - more penalty per parameter when $n \ge 8$
 - commonly used outside of wildlife
 - wildlife prefers AIC or AICc
- Same difficulty: what is n?
 - I don't believe anyone has investigated properties of the n = # releases suggestion

Example: Reid deermice data, *Peromyscus maniculatus*, 6 days, 99 traps per day, n = 133

Model	k	$\ln L$	AIC	AICc	BIC
M0	2	-57.635	119.27	119.36	125.0
Mt	7	-47.405	104.81	105.76	129.0
Mb	3	-43.422	92.84	93.03	101.5

Model selection / model averaging:

• Made up data: t = 5, minimum known alive $= M_{t+1} = 30$

model	k	\hat{N}	$\widehat{\operatorname{Var}}\hat{N}\mid model$	$\ln L$	AIC	Δ AIC	$\exp(-\Delta/2)$	weight
M0	2	50	30	-8.00	20.0	4.5	0.105	0.042
Mt	6	70	40	-2.25	16.5	1.0	0.606	0.243
Mb	3	90	60	-4.75	15.5	0	1.0	0.401
Mtb	7	80	60	-1.00	16.0	0.5	0.779	0.312

- Which model?
 - Burnham and Anderson, classic advice:

* Δ AIC < 2 model relatively well supported by data

– B&A, more recent advice:

* Δ AIC < 4 model relatively well supported by data

- Relationship between AIC choice and p-values, 2 nested models, H0: simpler model, Ha: add 1 parameter
 - * Choose model with smaller AIC: Δ AIC = 0 \Rightarrow LRT p-value = 0.16
 - * Consider 2 models with Δ AIC = 0 and = 1.84 \Rightarrow LRT p-value = 0.05
 - * Consider 2 models with $\Delta AIC = 0$ and $= 2.00 \Rightarrow LRT$ p-value = 0.046
 - * Consider 2 models with $\Delta AIC = 0$ and $= 4.00 \Rightarrow LRT$ p-value = 0.014
- classic & more recent: Δ AIC > 10 model not well supported by data
- Mb has smallest AIC: If choose that, $\hat{N} = 90$, se $\hat{N} = \sqrt{60} = 7.7$

Model averaging:

- Combine information from all fitted models, more emphasis on estimates from better fitting models
- Bayesian MA
 - Solid theoretical justification
 - Requires a deep dive into Bayesian methods

- Frequentist MA: Start with a list of fitted models
- In wildlife, AIC or AICc used to estimate model weights
 - Need AIC statistics for each model
 - For each model, calculate change in AIC from the best = ΔAIC_i for model *i* * Include best model, for which $\Delta AIC_i = 0$
 - Calculate unnormalized weights for each model $w_i^* = \exp(-\Delta A I C_i/2)$
 - * These formulae are for $\Delta AIC_i \ge 0$
 - * Use $\exp(\Delta AIC_i/2)$ if $\Delta AIC_i \leq 0$
 - normalize the weights to sum to 1: $w_i = w_i^* / \sum w_i^*$
- MA estimate of $\hat{\theta}_w = \sum_i w_i \hat{\theta}_i$
 - $-w_i$ is the weight for model *i*
 - $-\hat{\theta}_i$ is the estimate from model i

Inference on model averaged estimates

- Not an easy problem in the frequentist world, but see mata CIs (next week)
 - Multiple suggested solutions
- Bayesian MA avoids many of the frequentist problems
 - But introduces a new one: what are the prior probabilities for each model?
 - Are simpler models more likely? (i.e., have higher prior probability)
- Active research area, here are current simple approaches
 - Fletcher, D., 2018, Model Averaging, Springer, reviews current approaches

Standard error of MA estimate

• Quantities needed:

Var $\hat{\theta}_i \mid M_i$:estimated variance of $\hat{\theta}$ from model M_i $\hat{\theta}_i$:estimate of θ from model M_i $\hat{\theta}_w$:weighted MA estimate of θ

- Buckland et al. (1997) estimator: se $\hat{\theta}_w = \sum w_i \sqrt{\operatorname{Var}(\hat{\theta} \mid M_i) + (\hat{\theta}_i - \hat{\theta}_w)^2}$ - "Revised formula": se $\hat{\theta}_w = \sqrt{\sum w_i \left[\operatorname{Var}(\hat{\theta} \mid M_i) + (\hat{\theta}_i - \hat{\theta}_w)^2\right]}$

- Notes:
 - squared bias added to model-specific variance: accounts for estimates far from overall average
 - equivalent to statistics Mean-Squared Error = $Var + (bias)^2$ (not ANOVA MSE)
 - Buckland averages \sqrt{MSE} , Revised averages MSE
 - Averaging variance or MSE more typical, Buckland an ad hoc solution to correlated estimates
 - Revised Var always \geq Buckland (Cauchy-Schwarz inequality)
- For made-up data example:
 - Assume Mb is the correct model: $\hat{N} = 90$, se $\hat{N} = \sqrt{60} = 7.7$
 - MA estimate: $\hat{\theta}_w = 80.3$
 - Buckland: se $\hat{\theta}_w = 11.6$
 - Revised: se $\hat{\theta}_w = 12.5$
- A complication: both se formulae assume weights are known values
- They are random variables
 - Introduces additional uncertainty in se $\hat{\theta}_w$
 - and a nasty potential for bias
- Imagine that each model gives an unbiased estimate of $\hat{\theta}_i$
- i.e., $\mathbf{E} \ \hat{\theta}_i = \theta$
- When weights are fixed values, $E \sum w_i \hat{\theta}_i$ is unbiased, $= \sum w_i E \hat{\theta}_i = \theta$
- When weights are random, $E \sum w_i \hat{\theta}_i = \sum (E w_i) (E \hat{\theta}_i) + Cov w_i \hat{\theta}_i$
- unbiased only when no correlation between weights and estimates

Confidence interval for MA estimate

- Even harder problem for frequentist inference
 - mle theory $\Rightarrow \hat{\theta}_i$ has an asymptotic normal distribution
 - distribution of $\hat{\theta}_w$ is a mixture of normal distributions
- model-averaged-tail-area (mata) confidence intervals