Stat 534: formulae referenced in lecture, week 5: Otis closed population models

Aside on coefficient of variation (cv) and log scale parameters

- Reminder: cv describes relative variability
	- Usually used to describe data: $cv = sd$ / mean
	- Can also be used to describe relative variability in an estimate: $cv_{estimate}$ = $se_{estimate}$ / estimate
- close relationship between sd of a log-scale estimate and cv of that estimate
- Consider an estimate of a log-scale parameter, e.g., $\gamma = \log \theta$. You may have noticed that I:
	- have exponentiated γ to estimate θ , $\exp \gamma = \exp \log \theta = \theta$
	- have exponentiated lower and upper confidence limits for γ to get the ci for θ
	- have not exponentiated the se of γ
- General approximation: Var $\log \theta \cong \text{Var } \theta/(\theta)^2$

$$
- \text{ So } \text{cv of } \theta = \sqrt{\text{Var } \theta} / \theta \cong \text{sd } \log \theta
$$

- When $\gamma = \log \theta \sim N(\mu_l, \sigma_l^2)$, θ has a log normal distribution
	- $E \theta = \exp(\mu_l + \sigma_l^2/2)$
	- median $\theta = \exp \mu_l$
	- so mean of θ > median of θ . By how much depends on σ_l^2

$$
-\text{ Var } \theta = [\exp(\sigma_l^2) - 1] \exp(2\mu_l + \sigma_l^2) = (\text{E } \theta)^2 [\exp(\sigma_l^2) - 1]
$$

$$
-\text{ cv } \theta = \sqrt{\text{Var } \theta/(E\theta)^2} = \sqrt{\exp(\sigma_l^2) - 1}
$$

- Connection between the two formulae
	- When σ_l^2 close to 0, $\exp(\sigma_l^2) \cong 1 + \sigma_l^2$ so $\text{cv } \theta \cong \sqrt{1 + \sigma_l^2 1} = \sigma_l$.
	- Normal formula relies on that normality, but works for any σ_l^2
	- Approximation works for any distribution, best for small σ_l^2

Redpoll data example $(n_1 = 13, n_2 = 45, m_2 = 9)$

M0: constant capture probability

• Capture histories and their probabilities

• When you write out the log likelihood contributions from each unique capture history and combine terms, you get the log likelihood at the end of the week 4 notes

Mt: capture probability depends on occasion

- General model: unique capture probability for each occasion
- Sampling design and associated models often given names based on early investigators
- Study with multiple sampling occasions often called a Schnabel census Schnabel (1938) The estimation of the total fish population of a lake. Am. Math. Monthly 45:348-352
- $t+1$ parameters: $p_1, p_2, \cdots p_t, N$

• Writing out each contribution to lnL and combining terms gives:

 $\ln L(p_1, p_2, \dots p_t, N \mid n_1, n_2, \dots, n_t, M_{t+1}) = \log [N!] - \log [(N - M_{t+1})!] - constant$ + $n_1 \log p_1 + (N - n_1) \log(1 - p_1) + n_2 \log p_2 + (N - n_2) \log(1 - p_2) + \cdots$ $+n_t \log p_t + (N - n_t) \log(1 - p_t)$

• Notation:

 n_i total # caught on occasion i

 M_{t+1} # individuals seen at least once = # tags in population **after** the last occasion

- mle of N requires finding the root of an $t 1$ 'th degree polynomial
	- Easy for $t = 2 \Rightarrow LP$ estimator
	- Now, numerical maximization usually used for $t > 2$
- Other data models (e.g., versions of binomial models or hypergeometric models) lead to other estimators
- Note that $\hat{p}_i = n_i/\hat{N}$, if you have an estimate of N
	- So easy to optimize profile likelihood $\ln L(p_1, p_2, \cdots p_t | N)$

Mb: behavioural heterogeneity

- Capture probability different for 1st captures and subsequent captures
- "trap-happy" or "trap-shy" behaviours
- Notation:
	- p P[capture | never captured before]
	- c P[capture | captured already, at least once]
- Both p and c assumed constant over time
	- Model Mtb generalizes this to time-dependent p and c
- \bullet 3 parameters, no matter how many capture occasions: $p, \, c, \, N$
- Capture histories and their probabilities

• Notation:

- n_i : $#$ number of individuals caught at time i
- m_i # number marked individuals caught at time i
- m total # times marked individuals were captured, $m = \sum_i m_i$
- M_i # marked individuals in the population at time i (before start trapping)
- $M_{\scriptscriptstyle \odot}$ $\sum_{i=1}^t M_i$

Mb: log likelihood function

- After combining terms in the multinomial log likelihood, you will see that:
	- p occurs M_{t+1} times (each animal first seen only once)
	- c occurs m_1 times (total number of captures of already marked animals)
	- $-1-c$ occurs $M-m$ times (number of "capturable" marked animals that weren't captured)
	- 1 p occurs $tN M_{t+1} M$ times (by difference, hard to intuit)
- Hence the sufficient statistics are M_{t+1} , M_{t} , m_{t}
- So we can estimate 3 parameters
- The log likelihood is:

$$
\ln L(p, c, N \mid n_1, n_2, \cdots, M_{t+1}, M, m) = \log [N!] - \log [(N - M_{t+1})!] - constant +M_{t+1} \log p + (tN - M_{t+1} - M) \log(1 - p) + m \log c + (M - m) \log(1 - c)
$$

• Differentiating and solving gives:

$$
\begin{array}{rcl}\n\hat{p} & = & \frac{M_{t+1}}{t\hat{N} - M} \\
\hat{c} & = & \frac{m}{M}\n\end{array}
$$

- $tN M$ is total $#$ not yet caught occasions
	- Y Y Y $= 0$
	- $-$ Y Y N = 0
	- $-$ N Y Y = 1
	- $-$ N N Y $= 2$
- \hat{N} doesn't depend on m .
	- $-$ So second and subsequent captures provide no information about p (makes sense) or N (surprising)
	- c can be any value, without sacrificing information about N or p

Removal sampling:

- Don't return marked animals immediately, so $c = 0$
- Example

- Don't have to continue until you fail to catch more!
- Use model Mb with $m = 0$ so $\hat{c} = 0$
	- Could use Mtb if p is not constant

Choosing a model:

- AIC = $-2 \ln L + 2k$
	- k is the number of parameters in the model
- This is an asymptotic result
- Small-sample corrected AIC: AICc = $-2 \ln L + 2k + \frac{2k(k+1)}{n-k+1}$ $n-k+1$
	- Originally developed in the time-series literature: Hurvich and Tsai 1989, Biometrika 76:297-307
	- $n = \text{\#}$ observations
	- "useful when $n/k < 40$ "
- $\bullet\,$ What is n for mark recapture data?
	- $-$ Best answer (so far): total $\#$ releases (Nichols)
	- $-$ so an individual captured (and released) twice adds 2 to n
- BIC = $-2 \ln L + k \log n$
	- more penalty per parameter when $n \geq 8$
	- commonly used outside of wildlife
	- wildlife prefers AIC or AICc
- Same difficulty: what is n ?
	- I don't believe anyone has investigated properties of the $n = \#$ releases suggestion

Example: Reid deermice data, *Peromyscus maniculatus*, 6 days, 99 traps per day, $n = 133$

Model selection / model averaging:

• Made up data: $t = 5$, minimum known alive = $M_{t+1} = 30$

- Which model?
	- Burnham and Anderson, classic advice:

∗ ∆ AIC < 2 model relatively well supported by data

– B&A, more recent advice:

∗ ∆ AIC < 4 model relatively well supported by data

- Relationship between AIC choice and p-values, 2 nested models, H0: simpler model, Ha: add 1 parameter
	- ∗ Choose model with smaller AIC: ∆ AIC = 0 ⇒ LRT p-value = 0.16
	- ∗ Consider 2 models with ∆ AIC = 0 and = 1.84 ⇒ LRT p-value = 0.05
	- ∗ Consider 2 models with ∆ AIC = 0 and = 2.00 ⇒ LRT p-value = 0.046
	- ∗ Consider 2 models with ∆ AIC = 0 and = 4.00 ⇒ LRT p-value = 0.014
- classic & more recent: ∆ AIC > 10 model not well supported by data
- Mb has smallest AIC: If choose that, $\hat{N} = 90$, se $\hat{N} = \sqrt{ }$ $60 = 7.7$

Model averaging:

- Combine information from all fitted models, more emphasis on estimates from better fitting models
- Bayesian MA
	- Solid theoretical justification
	- Requires a deep dive into Bayesian methods
- Frequentist MA: Start with a list of fitted models
- In wildlife, AIC or AICc used to estimate model weights
	- Need AIC statistics for each model
	- For each model, calculate change in AIC from the best $= \Delta AIC_i$ for model i ∗ Include best model, for which $\Delta AIC_i = 0$
	- Calculate unnormalized weights for each model $w_i^* = \exp(-\Delta AIC_i/2)$
		- ∗ These formulae are for ∆AICⁱ ≥ 0
		- ∗ Use exp($\Delta AIC_i/2$) if $\Delta AIC_i \leq 0$
	- normalize the weights to sum to 1: $w_i = w_i^* / \sum w_i^*$
- MA estimate of $\hat{\theta}_w = \sum_i w_i \hat{\theta}_i$
	- w_i is the weight for model i
	- $\hat{\theta}_i$ is the estimate from model *i*

Inference on model averaged estimates

- Not an easy problem in the frequentist world, but see mata CIs (next week)
	- Multiple suggested solutions
- Bayesian MA avoids many of the frequentist problems
	- But introduces a new one: what are the prior probabilities for each model?
	- Are simpler models more likely? (i.e., have higher prior probability)
- Active research area, here are current simple approaches
	- Fletcher, D., 2018, Model Averaging, Springer, reviews current approaches

Standard error of MA estimate

• Quantities needed:

Var $\hat{\theta}_i \mid M_i$: estimated variance of $\hat{\theta}$ from model M_i $\hat{\theta}_i$: estimate of θ from model M_i $\hat{\theta}_w$: weighted MA estimate of θ

- Buckland et al. (1997) estimator: se $\hat{\theta}_w = \sum w_i \sqrt{\text{Var}(\hat{\theta} \mid M_i) + (\hat{\theta}_i - \hat{\theta}_w)^2}$ - "Revised formula": se $\hat{\theta}_w = \sqrt{\sum w_i \left[\text{Var}(\hat{\theta} \mid M_i) + (\hat{\theta}_i - \hat{\theta}_w)^2 \right]}$

- Notes:
	- squared bias added to model-specific variance: accounts for estimates far from overall average
	- equivalent to statistics Mean-Squared Error = $Var + (bias)^2$ (not ANOVA MSE)
	- Buckland averages \sqrt{MSE} , Revised averages MSE
	- Averaging variance or MSE more typical, Buckland an ad hoc solution to correlated estimates
	- $-$ Revised Var always \geq Buckland (Cauchy-Schwarz inequality)
- For made-up data example:
	- Assume Mb is the correct model: $\hat{N} = 90$, se $\hat{N} = \sqrt{ }$ $60 = 7.7$
	- MA estimate: $\hat{\theta}_w = 80.3$
	- Buckland: se $\hat{\theta}_w = 11.6$
	- Revised: se $\hat{\theta}_w = 12.5$
- A complication: both se formulae assume weights are known values
- They are random variables
	- Introduces additional uncertainty in se $\hat{\theta}_w$
	- and a nasty potential for bias
- Imagine that each model gives an unbiased estimate of $\hat{\theta}_i$
- i.e., $E \hat{\theta}_i = \theta$
- When weights are fixed values, $E \sum w_i \hat{\theta}_i$ is unbiased, $= \sum w_i E \hat{\theta}_i = \theta$
- When weights are random, $E \sum w_i \hat{\theta}_i = \sum (E w_i) (E \hat{\theta}_i) + Cov w_i \hat{\theta}_i$
- unbiased only when no correlation between weights and estimates

Confidence interval for MA estimate

- Even harder problem for frequentist inference
	- mle theory $\Rightarrow \hat{\theta}_i$ has an asymptotic normal distribution
	- distribution of $\hat{\theta}_w$ is a mixture of normal distributions
- model-averaged-tail-area (mata) confidence intervals