
Stat 534: formulae referenced in lecture, week 5:
Otis closed population models

Aside on coefficient of variation (cv) and log scale parameters

• Reminder: cv describes relative variability

– Usually used to describe data: cv = sd / mean

– Can also be used to describe relative variability in an estimate: cvestimate =
seestimate / estimate

• close relationship between sd of a log-scale estimate and cv of that estimate

• Consider an estimate of a log-scale parameter, e.g., γ = log θ.
You may have noticed that I:

– have exponentiated γ to estimate θ, exp γ = exp log θ = θ

– have exponentiated lower and upper confidence limits for γ to get the ci for θ

– have not exponentiated the se of γ

• General approximation: Var log θ ∼= Var θ/(θ)2

– So cv of θ =
√

Var θ/θ ∼= sd log θ

• When γ = log θ ∼ N(µl, σ
2
l ), θ has a log normal distribution

– E θ = exp (µl + σ2
l /2)

– median θ = expµl

– so mean of θ > median of θ. By how much depends on σ2
l

– Var θ = [exp(σ2
l )− 1] exp(2µl + σ2

l ) = (E θ)2 [exp(σ2
l )− 1]

– cv θ =
√

Var θ/(Eθ)2 =
√

exp(σ2
l )− 1

• Connection between the two formulae

– When σ2
l close to 0, exp(σ2

l ) ∼= 1 + σ2
l so cv θ ∼=

√
1 + σ2

l − 1 = σl.

– Normal formula relies on that normality, but works for any σ2
l

– Approximation works for any distribution, best for small σ2
l

Redpoll data example (n1 = 13, n2 = 45, m2 = 9)

Data set N̂ sd N̂ cv N̂ Var log N̂ sd log N̂ normal
redpoll 90.14 20.13 22.3% 0.0514 0.226 23.0%

2x 184.2 29.7 16.1% 0.0261 0.161 16.2 %
25x 2333 107.2 4.6% 0.0021 0.046 4.6%
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M0: constant capture probability

• Capture histories and their probabilities

Time
1 2 3 # animals probability
Y Y Y n111 p3

Y Y N n110 p2(1− p)
Y N Y n101 p2(1− p)
Y N N n100 p(1− p)2
N Y Y n011 p2(1− p)
N Y N n010 p(1− p)2
N N Y n001 p(1− p)2
N N N n000 (1− p)3

• When you write out the log likelihood contributions from each unique capture history
and combine terms, you get the log likelihood at the end of the week 4 notes

Mt: capture probability depends on occasion

• General model: unique capture probability for each occasion

• Sampling design and associated models often given names based on early investigators

• Study with multiple sampling occasions often called a Schnabel census
Schnabel (1938) The estimation of the total fish population of a lake. Am. Math.
Monthly 45:348-352

• t+ 1 parameters: p1, p2, · · · pt, N

Time
1 2 3 # animals probability
Y Y Y n111 p1p2p3
Y Y N n110 p1p2(1− p3)
Y N Y n101 p1(1− p2)p3
Y N N n100 p1(1− p2)(1− p3)
N Y Y n011 (1− p1)p2p3
N Y N n010 (1− p1)p2(1− p3)
N N Y n001 (1− p1)(1− p2)p3
N N N n000 (1− p1)(1− p2)(1− p3)

• Writing out each contribution to lnL and combining terms gives:

lnL(p1, p2, · · · pt, N | n1, n2, · · · , nt,Mt+1) = log [N !]− log [(N −Mt+1)!]− constant
+n1 log p1 + (N − n1) log(1− p1) + n2 log p2 + (N − n2) log(1− p2) + · · ·
+nt log pt + (N − nt) log(1− pt)
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• Notation:

ni total # caught on occasion i
Mt+1 # individuals seen at least once = # tags in population after the last occasion

• mle of N requires finding the root of an t− 1’th degree polynomial

– Easy for t = 2⇒ LP estimator

– Now, numerical maximization usually used for t > 2

• Other data models (e.g., versions of binomial models or hypergeometric models) lead
to other estimators

• Note that p̂i = ni/N̂ , if you have an estimate of N

– So easy to optimize profile likelihood lnL(p1, p2, · · · pt | N)

Mb: behavioural heterogeneity

• Capture probability different for 1st captures and subsequent captures

• “trap-happy” or “trap-shy” behaviours

• Notation:
p P[capture | never captured before]
c P[capture | captured already, at least once]

• Both p and c assumed constant over time

– Model Mtb generalizes this to time-dependent p and c

• 3 parameters, no matter how many capture occasions: p, c, N

• Capture histories and their probabilities

Time
1 2 3 # animals probability
Y Y Y n111 pc2

Y Y N n110 pc(1− c)
Y N Y n101 p(1− c)c
Y N N n100 p(1− c)2
N Y Y n011 (1− p)pc
N Y N n010 (1− p)p(1− c)
N N Y n001 (1− p)2p
N N N n000 (1− p)3

• Notation:
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ni: # number of individuals caught at time i
mi # number marked individuals caught at time i
m. total # times marked individuals were captured, m. =

∑
imi

Mi # marked individuals in the population at time i (before start trapping)
M.

∑t
i=1Mi

Mb: log likelihood function

• After combining terms in the multinomial log likelihood, you will see that:

– p occurs Mt+1 times (each animal first seen only once)

– c occurs m. times (total number of captures of already marked animals)

– 1− c occurs M.−m. times (number of “capturable” marked animals that weren’t
captured)

– 1− p occurs tN −Mt+1 −M. times (by difference, hard to intuit)

• Hence the sufficient statistics are Mt+1, M., m.

• So we can estimate 3 parameters

• The log likelihood is:

lnL(p, c,N | n1, n2, · · · ,Mt+1,M.,m.) = log [N !]− log [(N −Mt+1)!]− constant
+Mt+1 log p+ (tN −Mt+1 −M.) log(1− p) +m. log c+ (M. −m.) log(1− c)

• Differentiating and solving gives:

p̂ =
Mt+1

tN̂ −M.

ĉ =
m.

M.

• tN −M. is total # not yet caught occasions

– Y Y Y = 0

– Y Y N = 0

– N Y Y = 1

– N N Y = 2

• N̂ doesn’t depend on m.

– So second and subsequent captures provide no information about p (makes sense)
or N (surprising)

– c can be any value, without sacrificing information about N or p
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Removal sampling:

• Don’t return marked animals immediately, so c = 0

• Example
Occasion # caught
1 260
2 141
3 97
4 50

• Don’t have to continue until you fail to catch more!

• Use model Mb with m. = 0 so ĉ = 0

– Could use Mtb if p is not constant

Choosing a model:

• AIC = −2 lnL + 2k

– k is the number of parameters in the model

• This is an asymptotic result

• Small-sample corrected AIC: AICc = −2 lnL + 2k + 2k(k+1)
n−k+1

– Originally developed in the time-series literature:
Hurvich and Tsai 1989, Biometrika 76:297-307

– n = # observations

– “useful when n/k < 40”

• What is n for mark recapture data?

– Best answer (so far): total # releases (Nichols)

– so an individual captured (and released) twice adds 2 to n

• BIC = −2 lnL + k log n

– more penalty per parameter when n ≥ 8

– commonly used outside of wildlife

– wildlife prefers AIC or AICc

• Same difficulty: what is n?

– I don’t believe anyone has investigated properties of the n = # releases suggestion

Example: Reid deermice data, Peromyscus maniculatus, 6 days, 99 traps per day, n = 133
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Model k lnL AIC AICc BIC
M0 2 -57.635 119.27 119.36 125.0
Mt 7 -47.405 104.81 105.76 129.0
Mb 3 -43.422 92.84 93.03 101.5

Model selection / model averaging:

• Made up data: t = 5, minimum known alive = Mt+1 = 30

model k N̂ V̂ar N̂ | model lnL AIC ∆ AIC exp(−∆/2) weight
M0 2 50 30 −8.00 20.0 4.5 0.105 0.042
Mt 6 70 40 −2.25 16.5 1.0 0.606 0.243
Mb 3 90 60 −4.75 15.5 0 1.0 0.401
Mtb 7 80 60 −1.00 16.0 0.5 0.779 0.312

• Which model?

– Burnham and Anderson, classic advice:

∗ ∆ AIC < 2 model relatively well supported by data

– B&A, more recent advice:

∗ ∆ AIC < 4 model relatively well supported by data

– Relationship between AIC choice and p-values, 2 nested models, H0: simpler
model, Ha: add 1 parameter

∗ Choose model with smaller AIC: ∆ AIC = 0⇒ LRT p-value = 0.16

∗ Consider 2 models with ∆ AIC = 0 and = 1.84⇒ LRT p-value = 0.05

∗ Consider 2 models with ∆ AIC = 0 and = 2.00⇒ LRT p-value = 0.046

∗ Consider 2 models with ∆ AIC = 0 and = 4.00⇒ LRT p-value = 0.014

– classic & more recent: ∆ AIC > 10 model not well supported by data

• Mb has smallest AIC: If choose that, N̂ = 90, se N̂ =
√

60 = 7.7

Model averaging:

• Combine information from all fitted models, more emphasis on estimates from better
fitting models

• Bayesian MA

– Solid theoretical justification

– Requires a deep dive into Bayesian methods
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• Frequentist MA: Start with a list of fitted models

• In wildlife, AIC or AICc used to estimate model weights

– Need AIC statistics for each model

– For each model, calculate change in AIC from the best = ∆AICi for model i

∗ Include best model, for which ∆AICi = 0

– Calculate unnormalized weights for each model w∗
i = exp(−∆AICi/2)

∗ These formulae are for ∆AICi ≥ 0

∗ Use exp(∆AICi/2) if ∆AICi ≤ 0

– normalize the weights to sum to 1: wi = w∗
i /
∑
w∗

i

• MA estimate of θ̂w =
∑

iwiθ̂i

– wi is the weight for model i

– θ̂i is the estimate from model i

Inference on model averaged estimates

• Not an easy problem in the frequentist world, but see mata CIs (next week)

– Multiple suggested solutions

• Bayesian MA avoids many of the frequentist problems

– But introduces a new one: what are the prior probabilities for each model?

– Are simpler models more likely? (i.e., have higher prior probability)

• Active research area, here are current simple approaches

– Fletcher, D., 2018, Model Averaging, Springer, reviews current approaches

Standard error of MA estimate

• Quantities needed:

Var θ̂i |Mi: estimated variance of θ̂ from model Mi

θ̂i: estimate of θ from model Mi

θ̂w: weighted MA estimate of θ

– Buckland et al. (1997) estimator: se θ̂w =
∑
wi

√
Var(θ̂ |Mi) + (θ̂i − θ̂w)2

– “Revised formula”: se θ̂w =

√∑
wi

[
Var(θ̂ |Mi) + (θ̂i − θ̂w)2

]
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• Notes:

– squared bias added to model-specific variance: accounts for estimates far from
overall average

– equivalent to statistics Mean-Squared Error = Var + (bias)2 (not ANOVA MSE)

– Buckland averages
√
MSE, Revised averages MSE

– Averaging variance or MSE more typical, Buckland an ad hoc solution to corre-
lated estimates

– Revised Var always ≥ Buckland (Cauchy-Schwarz inequality)

• For made-up data example:

– Assume Mb is the correct model: N̂ = 90, se N̂ =
√

60 = 7.7

– MA estimate: θ̂w = 80.3

– Buckland: se θ̂w = 11.6

– Revised: se θ̂w = 12.5

• A complication: both se formulae assume weights are known values

• They are random variables

– Introduces additional uncertainty in se θ̂w

– and a nasty potential for bias

• Imagine that each model gives an unbiased estimate of θ̂i

• i.e., E θ̂i = θ

• When weights are fixed values, E
∑
wiθ̂i is unbiased, =

∑
wiEθ̂i = θ

• When weights are random, E
∑
wiθ̂i =

∑
(E wi)

(
E θ̂i

)
+ Cov wiθ̂i

• unbiased only when no correlation between weights and estimates

Confidence interval for MA estimate

• Even harder problem for frequentist inference

– mle theory ⇒ θ̂i has an asymptotic normal distribution

– distribution of θ̂w is a mixture of normal distributions

• model-averaged-tail-area (mata) confidence intervals
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